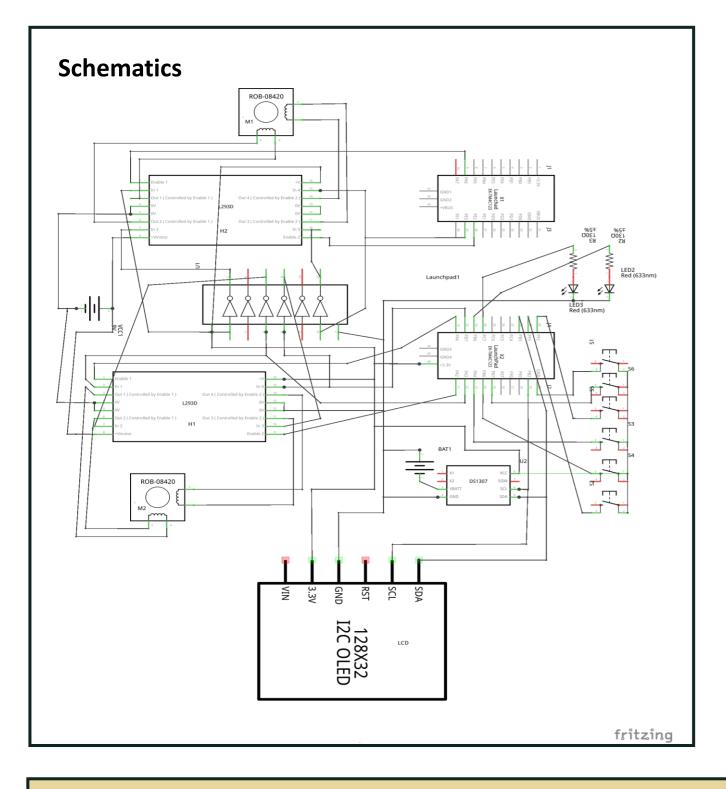
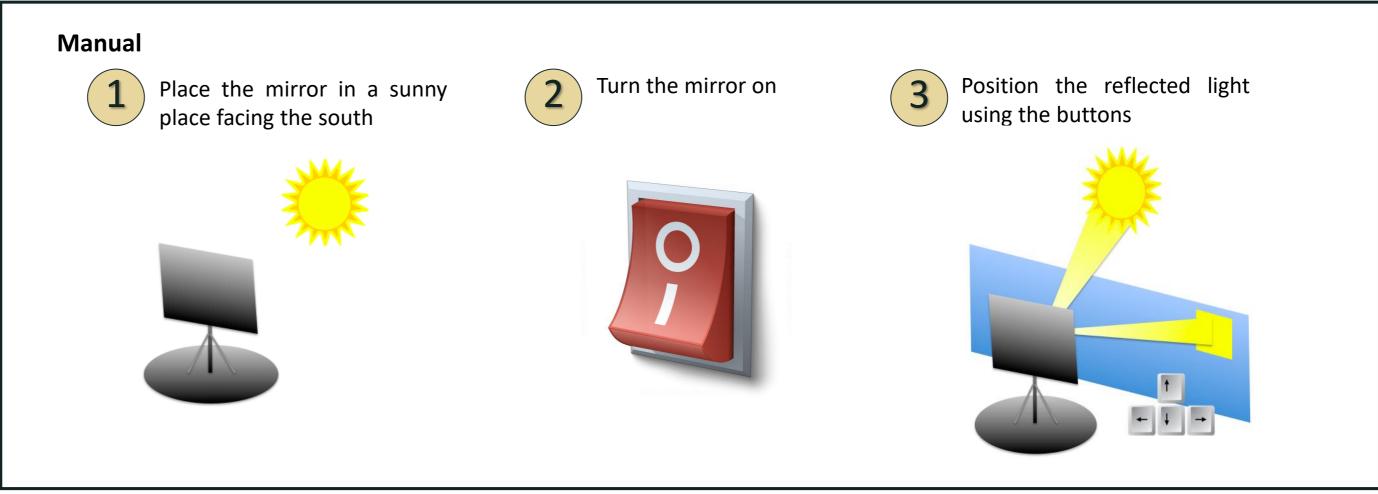
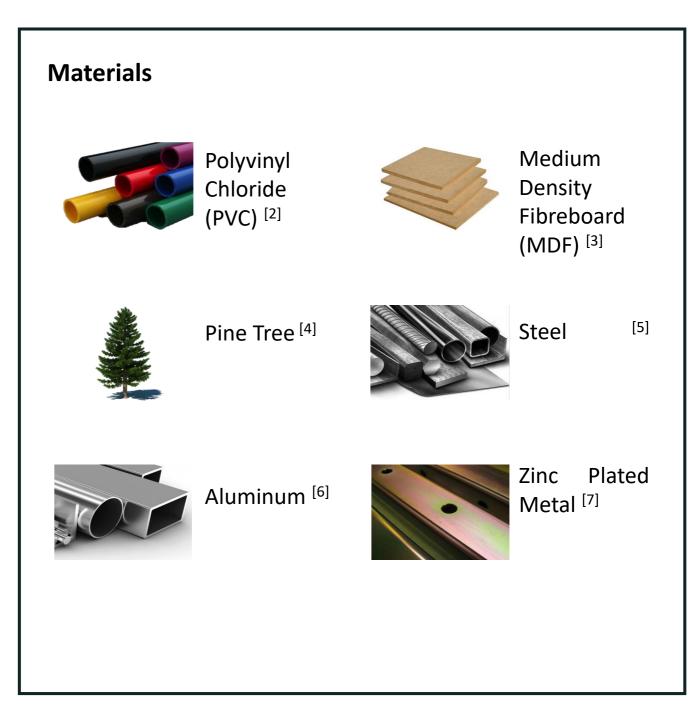
SUNO - The Self-Oriented Solar Mirror

An EPS@ISEP 2017 project

Margot Gutscoven, Jan Latko, Raymond Quinn, José Hugo Valiente Saltos, Anna Simons


What is a solar mirror?


A solar mirror is a simple way to harness solar energy and to transform it into energy that can be used daily. Raw materials are overused and new sources of energy are needed.


Goal

- Design and construct a self-oriented solar mirror
- The mirror must track the movement of the Sun
- The Mirror must reflect sunlight onto a pre-defined area
- Make the product customer friendly

Components

Bipolar Stepper Motor [8]

- Good resolution allows precise movement and easy control
- High torque and a holding torque without power supply

Power SupplySolar Panel (Final Product) [9]

- The product is designed to work only during the day and changes its position towards the Sun.
- The system will hibernate when the Sun is out of range, which will minimize the power consumption.

An external power supply (Prototype)

- Ideal because two different voltages are needed
- Supplies 12 volts for the motor and
 5 volts for the Tiva C board

LCD Display (Final Product) [10]

- Has to support SPI or I2C protocol to minimize number of pins used

RTC

- To keep track of time to know the position of the sun - the exact time has to be known
- It has to have its own battery and it has to support the I2C protocol.

Tiva C $^{[11]}$

Inexpensive, self-contained, single-board microcontroller

Others

- Buttons for user control
- Pull down resistors for the buttons
- Capacitors for Debounce
- Switches to detect end of range and turn device on/off

The team

Anna Simons
Industrial Management
Finland

Jan Latko
Computer Science
Poland

José Hugo Valiente Saltos Mechanical Engineering Spain

Margot Gutscoven
Building Engineering
Belgium

Raymond Quinn
Electrical Power Engineering
Scotland

References

[1] Electrical engineering Community, 2014. <u>Difference between open loop and closed loop systems.</u>

28/05/2017.
[2] Cands Plactics. Available: https://candsplastics.com, 28/05/2017.

[3] Indiamart. Available: https://dir.indiamart.com/jaipur/medium-density-fiberboard.html. 28/05/2017. [4] Turbosquid. Available: https://www.turbosquid.com/3d-models/3dsmax-pine-tree/390460.

28/05/2017.

[5] New Steel, miscellaneous. Available: http://news.steel-360.com/miscellaneous/say-yes-steel/.

28/05/2017.
[6] Central Aluminium. Available: http://www.centralaluminum.com/index.html. 28/05/2017.
[7] Del Splating, Zinc. Available: http://www.delsplating.com/zinc-plating.html. 28/05/2017.
[8] Ocean controls, Bipolar stepper motor. Available: https://oceancontrols.com.au/SFM-002.html.

01/06/2017.
[9] Wikipedia, solar cell. Available: https://en.wikipedia.org/wiki/Solar_cell. 01/06/2017.
[10] Amazon, images. Available: http://ecx.images-amazon.com/images/l/41WzWE5uF5L.jpg.

01/06/2017. [11] Ti, LaunchPad. Available: https://www.ti.com/ww/en/launchpad/launchpads-connected-ek-tm4c123gxl.html. 01/06/2017.