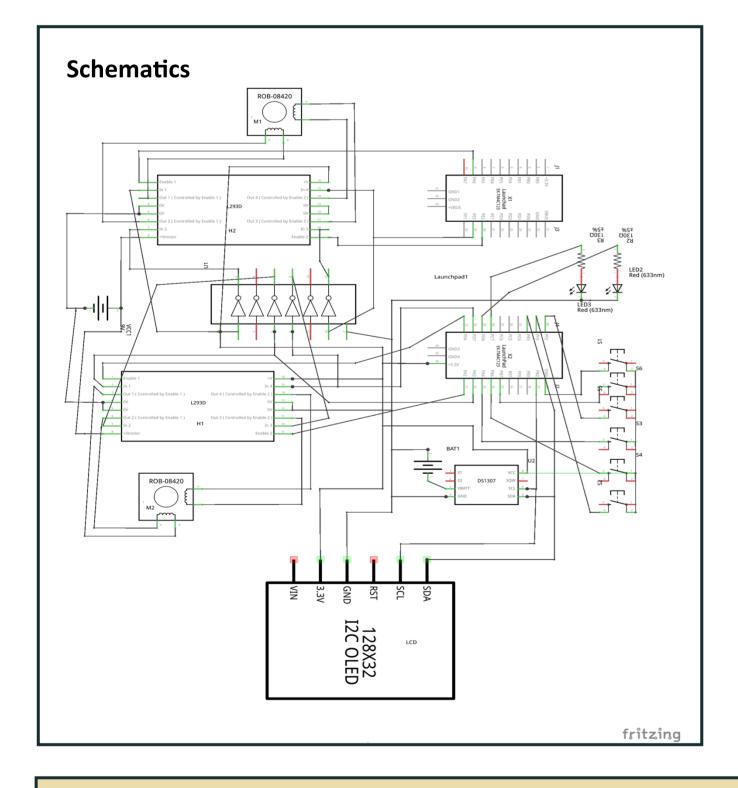

SUNO - The self-oriented Solar Mirror

An EPS@ISEP project

Anna Simons, Jan Latko, Jose Hugo Valiente, Margot Gutscoven, Ramond Quinn


What is the solar mirror?

The solar mirror is a simple way to harness solar energy and to transform it into energy that can be used daily. Raw materials are overused and new sources of energy are needed.

Goal

- Make a self oriented solar mirror
- Mirror must track the movement of the Sun and
- Mirror must reflect the sunlight onto a predefined area - Make the product costumer friendly

Manual Turn the mirror on Move to the focus point Place the mirror in a sunny using the buttons place facing the south

Components


Bipolar stepper motor [8]

- The good resolution allows precise movement and easy control
- High torque and a holding torque without power supply

Power supply

Solar Panel (Final product) [9]

- The product is supposed to work only during the day and changes its position towards the Sun.
- The system will hibernate when the Sun is out of range, which will minimize the power consumption.

An external power supply (Prototype)

- Ideal because two different voltages are needed
- Supplies 12 volt for the motor and 5 volt for the Arduino board

LCD display (Final product) [10]

- Has to support SPI or I2C protocol to minimize number of pins used
- RTC

- To keep track of time, to know the position of the sun, the exact time has to be known
- It has to have its own battery and it has to support the I2C protocol.

Tiva C [11]

Inexpensive, self-contained, singleboard microcontroller

Others

- LEDs and buttons (5 and on/off switch)
- Some additional resistors might be needed for the buttons as a pull down and capacitors for debounce.

The team

Anna Simons Industrial Management Finland

Jan Latko Computer Science Poland

José Hugo Valiente Saltos Mechanical Engineering Spain

Margot Gutscoven Building Engineering Belgium

Raymond Quinn Electrical Power Engineering Scotland

References

[1] Electrical engineering Community, 2014. <u>Difference between open loop and closed loop systems.</u>

[2] Cands Plactics. Available: https://candsplastics.com, 28/05/2017.

[3] Indiamart. Available: https://dir.indiamart.com/jaipur/medium-density-fiberboard.html. 28/05/2017.

[4] Turbosquid. Available: https://www.turbosquid.com/3d-models/3dsmax-pine-tree/390460.

[5] New Steel, miscellaneous. Available: http://news.steel-360.com/miscellaneous/say-yes-steel/. 28/05/2017. [6] Central Aluminium. Available: http://www.centralaluminum.com/index.html. 28/05/2017.

[7] Del Splating, Zinc. Available: http://www.delsplating.com/zinc-plating.html. 28/05/2017. [8] Ocean controls, Bipolar stepper motor. Available: https://oceancontrols.com.au/SFM-002.html.

[9] Wikipedia, solar cell. Available: https://en.wikipedia.org/wiki/Solar cell. 01/06/2017. [10] Amazon, images. Available: http://ecx.images-amazon.com/images/l/41WzWE5uF5L.ipg.

01/06/2017. [11] Ti, LaunchPad. Available:

https://www.ti.com/ww/en/launchpad/launchpads-connected-ek-tm4c123gxl.html. 01/06/2017.